首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12430篇
  免费   2121篇
  国内免费   1604篇
化学   8678篇
晶体学   382篇
力学   1127篇
综合类   90篇
数学   421篇
物理学   5457篇
  2024年   12篇
  2023年   113篇
  2022年   236篇
  2021年   339篇
  2020年   421篇
  2019年   350篇
  2018年   364篇
  2017年   501篇
  2016年   553篇
  2015年   447篇
  2014年   612篇
  2013年   1217篇
  2012年   735篇
  2011年   790篇
  2010年   591篇
  2009年   717篇
  2008年   786篇
  2007年   852篇
  2006年   793篇
  2005年   721篇
  2004年   682篇
  2003年   604篇
  2002年   563篇
  2001年   454篇
  2000年   404篇
  1999年   321篇
  1998年   257篇
  1997年   272篇
  1996年   198篇
  1995年   229篇
  1994年   211篇
  1993年   199篇
  1992年   161篇
  1991年   59篇
  1990年   69篇
  1989年   56篇
  1988年   51篇
  1987年   29篇
  1986年   33篇
  1985年   25篇
  1984年   22篇
  1983年   21篇
  1982年   24篇
  1981年   11篇
  1980年   11篇
  1979年   8篇
  1978年   9篇
  1976年   6篇
  1973年   7篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
102.
报道了一种将短切碳纤维(CF)自发焊接成三维网络结构的新方法.研究发现,尼龙6(PA6)与CF具有较强的相互作用,SEM照片及储能模量高温平台表明,添加少量PA6能够在PS基体中形成耐高温的CFPA6自焊接骨架结构,PA6用量越多,高温储能模量越高,自焊接骨架结构强度越大.研究证明,这种自焊接骨架结构能够大幅度提高PS/CF复合体系的热变形温度,碳纤维具有优异的导电导热性能,碳纤维骨架结构能够降低导电临界浓度,增强面内导热系数.进一步分析表明,PA6在碳纤维表面定向聚集是一个动力学过程,CF-PA6自焊接骨架强度与PA6黏附率NPA6呈线性关系;扩大PA6与PS的黏度差,延长热压时间均有利于提高NPA6,进而大幅提高网络结构强度.  相似文献   
103.
In the present work, an attempt has been made to prepare a new natural biopolymer blend electrolyte of carboxymethyl cellulose/chitosan impregnated with NH4NO3 by the solution casting technique. The conductivity for the system was measured by impedance spectroscopy. The incorporation of 40 wt.% NH4NO3 optimized the ambient temperature conductivity of the electrolyte up to 1.03 × 10?5 S cm?1. All electrolytes were found to follow the Arrhenius relationship. Dielectric studies confirmed that the electrolytes obey non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting film can be represented by the correlated barrier hopping model.  相似文献   
104.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.  相似文献   
105.
The conversion coating with golden color and improved corrosion resistance had been prepared by adding Mn2+ in the Ti/Zr conversion coating solution. Comparing with that of conversion coating without Mn2+, the optimal treatment time of this conversion coating was much shorter and the corrosion resistance was obviously improved. The effect of Mn2+ on the formation of golden Ti/Zr conversion coating was thoroughly investigated by means of energy dispersive X‐ray spectroscopy, SEM, XPS, and Raman and electrochemical workstation. The results showed that the conversion coating had a double‐layer structure: the outer layer consisted of the metal‐organic complex and the inner layer was mainly made up of Na3AlF6. Mn2+ was oxidized into MnOOH in solution and precipitated on the substrate surface which provided the nucleus to Na3AlF6 crystal and accelerated Na3AlF6 crystal formation and also made the microstructure of conversion coating change to the cubic. The mechanism of the formation of the conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal, and formation of metal‐organic complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
106.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
107.
AlTiCrN coating was prepared on the surface of YT14 tungsten carbide cutting tools by cathodic arc ion plating with Ti, Al and Cr as targets. The surface morphologies, interface energy spectrum, phase and elements' binding energy of the coatings were observed with SEM, EDS, XRD and XPS, respectively, and bonding strength of the coating interface was measured with scratch tester. The results show that the phases of AlTiCrN coating are mainly composed of AlN, CrN and TiN, the crystal plane of (111) has a strong preferred orientation. The concentrations of Al, Ti, Cr, N in the coating are higher than those in the substrate, showing the gradient diffusion distribution at the bonding interface, while C atoms of the substrate have diffused into the lattices of TiN, AlN and CrN to form an obvious interdiffusion layer, and the average bonding strength of coating interface is 57.65 N. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
108.
We report a potential coating material showing durable and significant antimicrobial activity for preserving the surfaces of a broad range of materials. The structure of the prepared antimicrobial adhesive material features a catechol moiety of dopamine hydrochloride conjugated to 4‐bromobutanoyl chloride as an adhesive material. Antimicrobial properties against a wide range of microorganism species are achieved by quaternizing a long hydrophobic chain (N,N'‐dimethyldecylamine) onto 3,4‐dihydroxyphenylalanine (Dopa) to afford the prepared material (Dopa‐decyl). The successful formation of Dopa‐decyl is confirmed by hydrogen nuclear magnetic resonance (1H‐NMR) and attenuated total reflectance‐infrared (ATR‐IR) measurements. The chemical composition of the quaternized adhesive material (Dopa‐decyl) is characterized by X‐ray photoelectron spectroscopy (XPS). Investigation of the antimicrobial activity of the Dopa‐decyl‐coated film against both gram‐positive Staphylococcus aureus (S. aureus) and gram‐negative Escherichia coli (E. coli) stains reveals a highly efficient antimicrobial effect under both normal and extreme stress conditions due to the biocidal effect of the quaternized amine when the materials are applied on the surface of various substrates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
109.
mAbs are widely used in cancer therapy. Their compounding, performed just before their administration to patients, is executed in a production unit of the hospital. Identification of these drugs, individually prepared in bags for infusion before patient administration, is of paramount importance to detect potential mistakes during compounding stage. A fast and reliable analytical method based on CZE combined to a cationic capillary coating (hexadimethrine bromide) was developed for identification of the most widely used compounded therapeutic for cancer therapy (bevacizumab, cetuximab, rituximab, and trastuzumab). Considering the high structural and physico‐chemical similarities of these mAbs, an extensive optimization of the BGE composition has been performed. The addition of perchlorate ions and polysorbate in the BGE greatly increased the resolution. To validate the method, an internal standard was used and the relative migration times (RTm) were estimated. Very satisfactory RSDs of the RTm for rituximab (0.76%), cetuximab (0.46%), bevacizumab (0.31%), and trastuzumab (0.60%) were obtained. The intraday and interday RSD of the method were less than 0.32 and 1.3%, respectively for RTm. Significant differences between theses RTms have been demonstrated allowing mAbs identification. Finally, accurate mAbs identification has been demonstrated by a blind test.  相似文献   
110.
Two of the most challenging problems that scientists and researchers face when they want to experiment with new cutting‐edge algorithms are the time‐consuming for encoding and the difficulties for linking them with other technologies and devices. In that sense, this article introduces the artificial organic networks toolkit for LabVIEW? (AON‐TL) from the implementation point of view. The toolkit is based on the framework provided by the artificial organic networks technique, giving it the potential to add new algorithms in the future based on this technique. Moreover, the toolkit inherits both the rapid prototyping and the easy‐to‐use characteristics of the LabVIEW? software (e.g., graphical programming, transparent usage of other softwares and devices, built‐in programming event‐driven for user interfaces), to make it simple for the end‐user. In fact, the article describes the global architecture of the toolkit, with particular emphasis in the software implementation of the so‐called artificial hydrocarbon networks algorithm. Lastly, the article includes two case studies for engineering purposes (i.e., sensor characterization) and chemistry applications (i.e., blood–brain barrier partitioning data model) to show the usage of the toolkit and the potential scalability of the artificial organic networks technique. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号